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Theorv of a Thermal Gradient Gas Lens
./

D. MARCUSE,

Absfracf—The analysis of the gas lens presented in an earlier

paper [1] is extended to a more complete ray optics description. The
focal length and principal surface of the gas lens have been com-

puted. It is found that the focal length reaches a minimum as a fnnc-

tion of flow velocity and that the two principal surfaces coincide very
nearly, making the device approximately a thin lens.

The gas lens is not free of distortions. The principal surface is not

a plane, and the focal length measured from the principal surface
depends on the distance of the ray from the lens axis. This de-

pendence is rather weak for gas flow rates minimizing the focal
length.

INTRODUCTION

ECENT PUBLICATIONS and experiments [1]-

R
[3] have shown that gases can be used effectively

to focus light beams.

The present paper extends the calculations of [1] to

a more complete ray optics of the tubular gas lens.

This lens consists of a tube that is kept at a constant

temperature higher than the temperature of the gas

flowing through it. The gas heats up close to the walls.

The heat penetrates radially into the gas establishing a

temperature gradient that causes a corresponding dens-

ity gradient. The gas density and consequently its re-

fractive index are higher at the center of the tube and

decrease toward the wall. The gas flowing through the

tube acts as a lens and focuses light beams traveling

through the tube.

We calculate the focal length and principal surface of

the gas lens using the paraxial ray equation. We are

thus able to characterize the extended focusing structure

of the gas lens by an equivalent lens making it possible

to predict the properties of lens combinations such as a

beam waveguide composed of gas lenses by conven-

tional optical methods without having to trace rays

through the actual gas lens combinations under con-

sideration.

Our results will show that an optimum gas velocity

exists which yields not only the minimum focal length

but at the same time minimizes lens distortions.

A lens distorts if its focal length depends on the ray

position and if its principal surface deviates from a plane.

The principal surface is defined by the points at which

every straight light ray incident parallel to the optical

axis has to be broken to coincide with the actual ray

outside of the lens. There are two principal surfaces; one

belonging to the ray incident from the left, the other to

that incident from the right of the lens (Fig. 1). The

lens is called thin if both principal surfaces coincide.

The gas lens is nearly a thin lens.
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Fig. 1 (a) Definition of focal length ~+ and principle surface p+ for
rays trave!ing with the gas flow. (b) Definition of focal length ~_
and principal surface p– for rays traveling against the gas flow.

The focal length is the distance from the intersection

between the principal surface and a straight light ray

entering the lens parallel to its optical axis to the point

at which this ray crosses the axis (Fig. 1).

Our analysis assumes that the light ray leaves the

end of the lens without any further deflection. This is

an idealized assumption. The gas temperature at the

end of the lens is higher than that of its surroundings,

and some transition region is needed to pass the light

ray on to the surrounding medium. For measurement

purposes the gas lens may be terminated by a glass

plate. The light ray will then suffer some refraction in

going from the warm gas in the tube, through the glass

plate, into the cooler air. However, using air and tem-

perature difference of AT= 50°C above room tempera-

ture, the change of the angle a between the ray and the

tube axis amounts only to (provided a<< 1)

ACY = a(n – 1) ~ = 4.5 10–6a

and can, therefore, be neglected.

The gas velocity of the lens will be given by a dimen-

sionless quantity [vO/ ~(~) ], with U. being the gas veloc-

ity on the axis of the tube and ~(~) given by

hL
V(L) = —

a2pcP

where

k = heat conductivity of the gas

p = gas density

CP = specific heat at constant pressure

a = tube radius

L= tube length

(1)
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The velocity distribution v in the tube has the parabolic

profile of a viscous fluid in Iaminar flow

v = Vll(l — %2) (2)

where z = ?/a and r = radial distance measured from tube

axis. The on-axis gas velocity is related to the flow rate

F (volume/time) by

2F
VI)= —-.

ir a2

THE RAY EQUATION

The equation of a light ray described

vector r is [4]

d dr

()
— n— = Vn.
ds ds

by a position

(3)

s is a length coordinate measured along the light ray and

n is the index of refraction of the medium. In case of our

gas lens, n is very close to 1, so that we replace n = 1 on

the left-hand side of the equation. Next we replace

ds = dz because the rays of interest run very closely

parallel to the axis of the lens which has been chosen

as the z-axis. 1 We use cylindrical polar coordinates r, ~, z

and assume rotational symmetry around the z-axis,

d/d~ = O. With the unit vectors el and es in the direc-

tion of the r and z coordinates, respectively, we can

write

r = elr + esz. (4)

Substituting (4) into (3) yields, approximately,

Equation (5) will be the starting point for the ray optics

of the gas lens.

The temperature dependence of the index of refrac-

tion is given by

T.
n =(%-1)--; (6)

no is the index of refraction measured at a temperature

T. which should be chosen as an average temperature

of the gas. We obtain from (6)

C% T. dT
—=–(72. –1)72 X-.
13Y

(7)

Since the absolute temperature in the tube changes only

slightly throughout the gas, we write

dn 1 dT
–=–(%-l)~ ~-.
dr a

(8)

1 The error resulting from this apprOXimaltiOn is discussed in
Appendix II.

Introducing

r
~=—

a

and

{=. ?

a

with

k
~.—

avOpcP

we obtain from (5) and (8)

d2x (na – 1) dT(x, z)

d~2=– - dx “U2Ta
(lo)

The temperature distribution T(x, z) in the gas is given

by [5]

Rm(x)
T(x, Z) = T.+ 2AT ~

()

e-fl~z~ (Ii)
m=o dRm “

& —
&3 .=1

AT= T.– To (:12)

where T.= wall temperature and TO= (constant) tem-

perature of gas at tube input. Curves of the temperature

distribution have been shown in [1]. A discussion of the

R-functions and their eigenvalues ~~ is given in Ap-

pendix 1.

FOCAL LENGTH AND PRINCIPAL SURFACE

The position of the ray x(u) and its slope x’ (z~) were

computed from (10) by numerical machine calculations

using the initial condition x’(u) = O [z~ ==u(~/a) and

dx/d{ = x’ ]. Once these quantities are known, the fclcal

length f+ and principal surface P+ of the lens can be

computed (Fig. 1)

x(o) — x(u)
:p+=u+

Xf (u)

(13)

(14)

The index + was added to indicate that the quantities

belong to rays traveling in the positive direction or with

the gas stream. Similarly, one can compute x’(o) with

the initial condition x’(u) = O and obtain focall length f_
and principal plane P– for rays traveling in the opposite

direction as the gas stream.

x(u) – x(o)
:p_=

d (o)

(15)

(16)
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These equations allow us to present j and P as func-

tions of the normalized tube length u. However, it is

more instructive to plot ~ and @ for a fixed tube length

and variable gas velocity ZIO.We normalize the gas veloc-

ity with respect to V(L) of (1) to obtain the dimension-

less quantity.

Vo a 1

V(L)= Z=;”
(17)

We can now write

f Vo
—.—
L

~f
V(L) a

(18)

and a similar expression for $/L.

Equations (10) and (11) show that dx/d~ depends on

a quantity

~ = (n= – l)AT

u2Ta

In a presentation which shows f and P as functions of

vo/ V(L) for constant tube length, D is not a constant

because u depends on vO,

() ‘ (n, – l)AT L 2
D= ~

V(L) ()T.;”

f/L and j/L as functions of [Z.Jo/V(L)] contain the

parameter

() ()ATL2
C2=(n. –l)~— ,

a a a

(19)
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Fig. 2. Normalized focal length ~/L as a function of normalized
gas velocity voV(L) for various values of C(L/u) at x(o)= 0.1.

DISCUSSION OF NUMERICAL RESULTS

Figure 2 shows the normalized focal length .f+/L as a

function of vO/ V(L) for rays entering the tube at x(o)

= 0.1. The focal length reaches a minimum at approxi-

mately [vO/ V(L) ] = 6.5. This minimum can be easily

explained. For zero gas velocity there is no lens action

at all since the gas heats up instantaneously at z = O so

that f= cc.With increasing gas velocity the lens begins

to function. At very high gas velocity, on the other

hand, the gas passes the tube too quickly to heat up at

all and again lens action becomes impossible. This con-

sideration shows that there must be an optimum flow

rate. The focal length is very nearly proportional to C–1

for lower values of C. This fact is useful for interpolat-

ing f/L for other values of C. A gas lens using air, a

temperature difference AT= 50”C, L =20 cm, and

u =0.3 cm has C(L/a) =0.2. That means it has an opti-

mum focal lens of f/L= 3 or f = 60 cm.

Figure 3 presents the points x(o) = 0.1 of the principal

surface as a function of vO/ V(L). The principal surface

is remarkably independent of C. The form of this curve

can again easily be explained. For zero gas velocity the

lens action moves all the way to the input end of the

tube. With increasing gas velocity, the active portion of

the lens moves further and further down into the tube

as it takes longer for the gas close to the tube axis to

heat up.
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Fig. 3. Normalized position of principal surface p/L at x(o)= 0.1
as a function of normalized gas velocity vO/V(L ) for various
values of C(L/a).
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Figures 4 and 5 show f/Las a function of the entrance

position x of the ray for various values of vO/ V(L). The

dotted lines are the focal length f_/L of the rays travel-

ing in the opposite direction as the gas flow.

Of all the curves shown, the one with vo/ V(L)= 6.45

(Fig. 4) shows the least dependence (of f/L on x. It is

nice that this minimum of focal length distortion occurs

at the same flow velocity at which f/L has its minimum.

Finally, Figs. 6 and 7 show the shape of the principal

surface for different values of vO/ V(L). The dotted

curves refer again to the ray traveling in the opposite

direction. It can be seen that the coincidence of the two
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Fig. 5. Focal length as a function of the entrance position x
of the ray for vo/ V(L)= 10 and vo/ V(L)== 20.
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principal surfaces is not perfect. However, they are close

enough to make the gas lens appear as practically a

thin lens. At its optimum flow rate it is a thin lens with

little distortion which is warped to fit the shape of the

principal surface.

CONCLUSION

The discussion of the ray optics of the gas lens shows

that gases can be used rather effectively to focus light

and act as lenses of surprisingly short focal length and a

moderate amount of lens distortion. The fact that they

are optically thin lenses allows the application of the
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theory of thin lenses to describe their performance in

an optical or light transmission system.

The present discussion does not mention convection

distortions which occur under the influence of the gravi-

tational field if the lens is operated with its axis in

horizontal position.

W. H. Steiers paper [3] discusses the experimental

evidence for gravitational distortions. However, his

paper also shows that the theory presented here is in

good agreement with experiments.

zero and one but the coefficients C2, grow to values

above 1020. The series (23) can be used to compute $?n

for x in the range O <x <0.5, since the powers of x de-

crease rapidly enough to keep the value of the product

CZ,x2” within manageable proportions.

However, in order to cover the whole range O <x <1,

it proved necessary to use another series expansion.

We used

R(x) = ~ Dvy’ withy =l—x (26)
W=o

APPENDIX I to calculate R in the range 0.5 <x <1.

THE R-FUNCTIONS AND THEIR EIGENVALUES pn Equation (20) expressed in terms of y reads

The R-functions are solutions of the differential equa-
d2K

tion [5], [6]
(1 – Y) ~ – ; + i32(2y – 3y’ + y’)R = O. (27)

d2R 1 dR
~+ Z--+ P2(l-X2)R =0. (20) Do= O has to be chosen to satisfy the boundary con-

ditions R(1) =0 at x=1.

The solutions of (20) are related to Whittaker’s func-
Substitution of (26) into (27) yields

tions W, ,Mby

R.= ‘;W~,4,0(~x2).
x

The eigenvalue 13 is determined from the

dition

R(1) = O.

1
DZ=7D1, D~=; Dl,

(21)
‘4=(H’2)D1

1
D, =

boundary con-

( (v — l)zDti_l
V(v — 1)

– i32(2Dv-t – 3Dv-4 + D,-,)}. (28)

(22) The eigenvalue @ and the coefficient D, have to be-.

To compute R we use the series expansion

R(x) = S C2vx2”. (23)
V=(I

For the problem of interest to us, R(x) has to be an

even function of x, and for that reason only even powers

of x appear in (23). The normalization

R(0) = 1

requires that

co = 1. (24)

Substitution of (23) into (20) using (24) leads to

C2= +’

and

The fact that f?z enters in all coefficients C2V makes

the determination of ~. very tedious.

A further difficulty results from the fact that the

coefficients CZ, grow to very large values, particu-

larly for the larger values of (3. before they decrease

again. The series (23) does not converge readily for

values of x close to 1. In fact, it proved impossible to

compute more than the first eight R-functions from (23)

on the IBh’f 7094 computer, even using double preci-

sion, since the absolute value of R remains between

chosen so that R as well as R’ are continuous at x = 0.5,

~,here both series expansions should coincide.

By breaking the range of x into two parts and using

different series expansions to cover both parts of the

range it was possible to compute the R-functions and

their eigenvalues. Table I shows the first fifteen eigen-

values ~n as well as dRn/13~ and F,,’ taken at x = 1.

TABLE I

n i% R.’(l) dR/dfkt= 1, p= p“

o 2.70436 –1.01430 –o .50090

1 6.67903 1.34924 0.37146

2 10.67338 –1.57232 –0.31826

3 14.6711 1,74600 0.28648

4 18.6699 – 1.89090 –0.26449

5 22.6691 2.01647 0.24799

6 26.6686 –2.12814 –0,23491

7 30.6682 2,22038 0.22485

8 34.6679 –2.32214 –0.21548

9 38.6676 2.40274 0.20779

10 42.6667 –2 .48992 –0.20108

11 46.6667 2.56223 0.19516

12 50.6667 –2 .64962 –0.18988

13 54.6667 2.70216 0.18513

14 58.6667 –2.76421 –0.18083
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The values of c3R./c3~ were obtained from differentia- get 2Z~.X = .5.62 1o–5 or

tion of the series (23) and evaluating it at x =1. The

terms of the differentiated series grow very large so
Af
— < 1.1210–4.

that only the first eight values of dR./d(3 could be ob-
~-

tained. The remaining values were calculated from the
To estimate the error introduced in the computation of

approximation [6]
the principal surface we have to obtain the reli~tive error

1 dR\ m- of the rav position x(~).

(–) .=,=–(–l)”—” (29)
dp ~=~n

()

6213r -? /jnl/3

3

which is in good agreement with the values obtained by

machine calculation for larger values of n.

APPENDIX II

ESTIMATE OF THE ERROR INTF:ODUCED

BY SETTING ds = dz

It is

:=%[l+G)’12

‘%[1-2(32:1
(30)

The slope of the ray k = dx/dz is given by

dx
4 = — (1 + ti2)l/~ =

ds :(’++ ’2) ‘3’)

The derivative dx/ds is obtained from

d.x s‘ d’x sL d~%

—ds=
z=

— (1 + i2)1/2dz
o dsz ~ ds’

m-hich, with the help of (30) becomes

Combining (31) and (32) and replacing 2 by its maxi-

mum value ~max, we see that the relative error is

(33)

It follows from (13) that the relative error of the focal

length is

Since the focal length is given by

f = ‘(o),
x(L)

we have

()
x(o) 2

~2=_

f’

(34)

(35)

(36)

The ray trajectory is a monotonic function so that

\k(L)l=12m.~1.

A typical gas lens has a radius a = 0.3 cm and length

L =20 cm, Assuming f/L= 2 and taking x(O) = a, we

ss dx J
L

X(L) = x(o) + — ds = x@) +
, ds o

or using (31) and (32)

or

L.

Ss
< x(O) + (1 + 2A:=) dz

o 0

A[x(L) – x(0)] < Zx,

s(L) – x(O) – “x’

From (14) we obtain

A(L – f) < ~ A[J(L) – x(o)]
$

x (Z) dz

dzx
~; d{

,:

(37)

or with the help of (33), (37), and (14) and considering

that I k~~~) = ) ~(L) \ ,

A(L – p) < Sk,

L–p – “x”
(38)

With the numbers of the example used in the foregoing,

we get

A(L – ~)
< 1.710-4.

L–p

This shows that the error caused by replacing ds =Zdz

is indeed negligible.
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