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Theory of a Thermal Gradient Gas Lens

D. MARCUSE, MEMBER, IEEE

Abstract—The analysis of the gas lens presented in an earlier
paper [1] is extended to a more complete ray optics description. The
focal length and principal surface of the gas lens have been com-
puted. It is found that the focal length reaches a minimum as a func-
tion of flow velocity and that the two principal surfaces coincide very
nearly, making the device approximately a thin lens.

The gas lens is not free of distortions. The principal surface is not
a plane, and the focal length measured from the principal surface
depends on the distance of the ray from the lens axis. This de-
pendence is rather weak for gas flow rates minimizing the focal
length.

INTRODUCTION

ECENT PUBLICATIONS and experiments [1]-
R [3] have shown that gases can be used effectively
to focus light beams.

The present paper extends the calculations of [1] to
a more complete ray optics of the tubular gas lens.

This lens consists of a tube that is kept at a constant
temperature higher than the temperature of the gas
flowing through it. The gas heats up close to the walls.
The heat penetrates radially into the gas establishing a
temperature gradient that causes a corresponding dens-
ity gradient. The gas density and consequently its re-
fractive index are higher at the center of the tube and
decrease toward the wall. The gas flowing through the
tube acts as a lens and focuses light beams traveling
through the tube.

We calculate the focal length and principal surface of
the gas lens using the paraxial ray equation. We are
thus able to characterize the extended focusing structure
of the gas lens by an equivalent lens making it possible
to predict the properties of lens combinations such as a
beam waveguide composed of gas lenses by conven-
tional optical methods without having to trace rays
through the actual gas lens combinations under con-
sideration.

Our results will show that an optimum gas velocity
exists which yields not only the minimum focal length
but at the same time minimizes lens distortions.

A lens distorts if its focal length depends on the ray
position and if its principal surface deviates from a plane.
The principal surface is defined by the points at which
every straight light ray incident parallel to the optical
axis has to be broken to coincide with the actual ray
outside of the lens. There are two principal surfaces; one
belonging to the ray incident from the left, the other to
that incident from the right of the lens (Fig. 1). The
lens is called thin if both principal surfaces coincide.
The gas lens is nearly a thin lens.
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Fig. 1 (a) Definition of focal length f, and principle surface p, for
rays traveling with the gas flow. (b) Definition of focal length f_
and principal surface p_ for rays traveling against the gas flow.

The focal length is the distance from the intersection
between the principal surface and a straight light ray
entering the lens parallel to its optical axis to the point
at which this ray crosses the axis (Fig. 1).

Our analysis assumes that the light ray leaves the
end of the lens without any further deflection. This is
an idealized assumption. The gas temperature at the
end of the lens is higher than that of its surroundings,
and some transition region is needed to pass the light
ray on to the surrounding medium. For measurement
purposes the gas lens may be terminated by a glass
plate. The light ray will then suffer some refraction in
going from the warm gas in the tube, through the glass
plate, into the cooler air. However, using air and tem-
perature difference of AT =350°C above room tempera-
ture, the change of the angle o between the ray and the
tube axis amounts only to (provided a<<1)

AT
Aa = a(n — 1) T = 4.510"5«

and can, therefore, be neglected.

The gas velocity of the lens will be given by a dimen-
sionless quantity [vo/ V(L) ], with v, being the gas veloc-
ity on the axis of the tube and V(L) given by

kL

a’pc,

V(L) = n

where

k=heat conductivity of the gas
p=gas density

¢p=specific heat at constant pressure
@ =tube radius

L =tube length
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The velocity distribution v in the tube has the parabolic
profile of a viscous fluid in laminar flow

v = 9o(1 — x?) (2)

where x=r/a and r =radial distance measured from tube
axis. The on-axis gas velocity is related to the flow rate
F (volume/time) by

2 F

THE RaY EQUATION

The equation of a light ray described by a position

vector r is [4]
d dr
— (n —) = Vn. (3)

s is a length coordinate measured along the light ray and
n is the index of refraction of the medium. In case of our
gas lens, # is very close to 1, so that we replace =1 on
the left-hand side of the equation. Next we replace
ds=dz because the rays of interest run very closely
parallel to the axis of the lens which has been chosen
as the z-axis.! We use cylindrical polar coordinates r, ¢, 2
and assume rotational symmetry around the z-axis,
9/8¢ =0. With the unit vectors e; and e; in the direc-
tion of the r and 2z coordinates, respectively, we can
write

r = ey + ess. 4)
Substituting (4) into (3) vields, approximately,

d on 5)
dz? " ar

Equation (5) will be the starting point for the ray optics
of the gas lens.

The temperature dependence of the index of refrac-
tion is given by

n=<na—1)%; ©)

7, is the index of refraction measured at a temperature
T. which should be chosen as an average temperature
of the gas. We obtain from (6)

on T, oT
— ==y —1)— — 7
or ( )TZ or ™

Since the absolute temperature in the tube changes only
slightly throughout the gas, we write

n ( n 1 0T ®
—_—== (g ™ — .
or T, or

1 The error resulting from this approximation is discussed in
Appendix II.
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Introducing
7
& =— (9a)
a
and
3
{=o0— (9b)
a
with
k
g = (9c)
avoply
we obtain from (5) and (8)
d?x ne — 1) 9T (%, 2
Pr 1) 9T %) 0
ac? T, ox

The temperature distribution 7T(x, 2) in the gas is given

by [5]

=] Rm
T(x,2) = Ty, + 24T 2 A e’ (11)
m=0 aRm
()
0.8 z=1

where T, =wall temperature and T,=(constant) tem-
perature of gas at tube input. Curves of the temperature
distribution have been shown in [1]. A discussion of the
R-functions and their eigenvalues 8, is given in Ap-
pendix I.

FocAL LENGTH AND PRINCIPAL SURFACE

The position of the ray x(u) and its slope «’(%) were
computed from (10) by numerical machine calculations
using the initial condition *'(#)=0 [w=0(L/a) and
dx/d¢=x"]. Once these quantities are known, the focal
length f. and principal surface p, of the lens can be
computed (Fig. 1)

o %0 ,
';f+ T (13)
o w(0) — alu) ,
" by =wt 2 (14)

The index + was added to indicate that the quantities
belong to rays traveling in the positive direction or with
the gas stream. Similarly, one can compute %'(0) with
the initial condition x'(x#) =0 and obtain focal length f_
and principal plane p_ for rays traveling in the opposite
direction as the gas stream.

o _ x(u) )
PRl (15)
o x(u) — x(0) .
oy = T 16
a ? 2’ (0) (16)
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These equations allow us to present f and p as func-
tions of the normalized tube length #. However, it is
more instructive to plot f and p for a fixed tube length
and variable gas velocity »,. We normalize the gas veloc-
ity with respect to V(L) of (1) to obtain the dimension-
less quantity.

1
o _ 9 . 17
V(L) oL =
We can now write
S n e 1 (18)
L VI a

and a similar expression for p/L.
Equations (10) and (11) show that dx/d{ depends on
a quantity
(. — DAT
B a*T,
In a presentation which shows f and p as functions of

2o/ V(L) for constant tube length, D is not a constant
because o depends on 2,

o= (i) ()

f/L and p/L as functions of [ve/V(L)] contain the

parameter
L AT /L\?
C<—> = (n, — 1) (———) . (19)
a T, \a
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Fig. 2. Normalized focal length f/L as a function of normalized

gas velocity % V(L) for various values of C(L/a) at x(0)=0.1.
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DiscussioN oF NUMERICAL RESULTS

Figure 2 shows the normalized focal length f,/L as a
function of vy/ V(L) for rays entering the tube at x(o)
=0.1. The focal length reaches a minimum at approxi-
mately [vo/V(L)}=6.5. This minimum can be easily
explained. For zero gas velocity there is no lens action
at all since the gas heats up instantaneously at 2=0 so
that f= «. With increasing gas velocity the lens begins
to function. At very high gas velocity, on the other
hand, the gas passes the tube too quickly to heat up at
all and again lens action becomes impossible. This con-
sideration shows that there must be an optimum flow
rate. The focal length is very nearly proportional to C—!
for lower values of C. This fact is useful for interpolat-
ing f/L for other values of C. A gas lens using air, a
temperature difference AT =50°C, L=20 cm, and
¢=0.3 cm has C(L/a) =0.2. That means it has an opti-
mum focal lens of f/L =3 or f=60 cm.

Figure 3 presents the points x(0) =0.1 of the principal
surface as a function of v,/ V(L). The principal surface
is remarkably independent of C. The form of this curve
can again easily be explained. For zero gas velocity the
lens action moves all the way to the input end of the
tube. With increasing gas velocity, the active portion of
the lens moves further and further down into the tube
as it takes longer for the gas close to the tube axis to
heat up.
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Fig. 3. Normalized position of principal surface p/L at x(0)=0.1

as a function of normalized gas velocity v,/ V(L) for various
values of C(L/a).
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Fig. 4. Focal length as a function of the entrance position x of the
ray for vo/ V(L)=2 and v/ V(L)=6.45.
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Figures 4 and 5 show f/L as a function of the entrance
position x of the ray for various values of vo/ V(L). The
dotted lines are the focal length f_/L of the rays travel-
ing in the opposite direction as the gas flow.

Of all the curves shown, the one with v,/ V(L) =6.45
(Fig. 4) shows the least dependence of f/L on «x. It is
nice that this minimum of focal length distortion occurs
at the same flow velocity at which f/L has its minimum.

Finally, Figs. 6 and 7 show the shape of the principal
surface for different values of wvo/V(L). The dotted
curves refer again to the ray traveling in the opposite
direction. It can be seen that the coincidence of the two

MARCUSE: THERMAL GRADIENT GAS LENS THEORY

737

40

20 DN

olr
—
&

]

viL)
e——— 0.05
\ =N —__” 10
10 ——
- l—20
18
L g

| O—]

~——20
I 1 1 ! 1 1
¢} 0.2 0.4 0.6 0.8 1.0
X
fe
T
f__
L
Fig. 5. Focal length as a function of the entrance position x
of the ray for v/ V(L)=10 and v/ V(L)==20.
08
\\\
L
ci{=)
\ a
e — \\ 0 0[5
:"~\\ \
-~ 0.3
{o603 o~ N
e SN\ \
0.3—/ ~
[ NN
L AN N
/0.05 \\\\\ l/o
0.5 N AN v (L).—
0.05 N\
A\ N
\. Y
NS 20
0.4 A ]
' ~ ]10
N
0.3
0 0.2 0.4 0.6 08 1.0
x
Py
—
—_ P
L

Fig. 7. Shape of the principal surface for vo/ V(L)=10
and v/ V(L)=20.

principal surfaces is not perfect. However, they are close
enough to make the gas lens appear as practically a
thin lens. At its optimum flow rate it is a thin lens with
little distortion which is warped to fit the shape of the
principal surface.

CONCLUSION

The discussion of the ray optics of the gas lens shows
that gases can be used rather effectively to focus light
and act as lenses of surprisingly short focal length and a
moderate amount of lens distortion. The fact that they
are optically thin lenses allows the application of the
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theory of thin lenses to describe their performance in
an optical or light transmission system.

The present discussion does not mention convection
distortions which occur under the influence of the gravi-
tational field if the lens is operated with its axis in
horizontal position.

W. H. Steiers paper [3] discusses the experimental
evidence for gravitational distortions. However, his
paper also shows that the theory presented here is in
good agreement with experiments.

ArpeEnDIX 1
Tue R-FUNCTIONS AND THEIR EIGENVALUES 3,

The R-functions are solutions of the differential equa-
tion [5], [6]
1 dR

d’R
o - )R =0,
dx? x dx

(20)
The solutions of (20) are related to Whittaker’s func-
tions W, by

i
R = ;LWEM,O(B?C",)‘ (21)

The eigenvalue § is determined from the boundary con-
dition

R(1) = 0. (22)
To compute R we use the series expansion
R(x) = 2 Capi™. (23)
v=0

For the problem of interest to us, R(x) has to be an
even function of x, and for that reason only even powers
of x appear in (23). The normalization

R(0) =1
requires that
Co = 1. 24)
Substitution of (23) into (20) using (24) leads to
Cy, = ! G2
g = — —
4
and
8°
Coo {Cops — Cag}  foro>2. (25

@

The fact that 8% enters in all coefficients Cs, makes
the determination of 8, very tedious.

A further difficulty results from the fact that the
coefficients Cy, grow to very large values, particu-
larly for the larger values of 8, before they decrease
again. The series (23) does not converge readily for
values of x close to 1. In fact, it proved impossible to
compute more than the first eight R-functions from (23)
on the IBM 7094 computer, even using double preci-
sion, since the absolute value of R remains between
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zero and one but the coefficients C;, grow to values
above 10?°. The series (23) can be used to compute R,
for x in the range 0<x<0.5, since the powers of x de-
crease rapidly enough to keep the value of the product
(Cyx?® within manageable proportions.

However, in order to cover the whole range 0<x <1,
it proved necessary to use another series expansion.

We used

R(x) = 2 Dy’ withy=1—g% (26)
v=0
to calculate R in the range 0.5 <x <1,
Equation (20) expressed in terms of y reads
d’R

(1—y)d72~

dR
o H ARy =3 )R = 0. (27)
y
Dy=0 has to be chosen to satisfy the boundary con-
ditions R(1) =0 at x=1.
Substitution of (26) into (27) yields

1 1 1 1
D2=_D1, D3=?D1, D4=<—*——'%62)D1

1
Dv = {(‘U - 1)2D7)_1
v(v — 1)
— B(2Dy_s — 3D,y + D,5)}. (28)

The eigenvalue g and the coefficient D; have to be
chosen so that R as well as R’ are continuous at x=0.5,
where both series expansions should coincide.

By breaking the range of x into two parts and using
different series expansions to cover both parts of the
range it was possible to compute the R-functions and
their eigenvalues. Table I shows the first fifteen eigen-
values 3, as well as R, /0B and F,’ taken at x=1.

TABLE I
n Bn R,M(1) OR/0Bx=1,8=p"
0 2.70436 —1.01430 —0.50090
1 6.67903 1.34924 0.37146
2 10.67338 —1.57232 —0.31826
3 14.6711 1.74600 0.28648
4 18.6699 —1.89090 —0.26449
S 22.6691 2.01647 0.24799
6 26.6686 —2.12814 —0.23491
7 30.6682 2.22038 0.22485
8 34.6679 —2.32214 —0.21548
9 38.6676 2.40274 0.20779
10 42.6667 —2.48992 —0.20108
11 46.6667 2.56223 0.19516
12 50.6667 —2.64962 —0.18988
13 54.6667 2.70216 0.18513
14 58.6667 —2.76421 —0.18083
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The values of dR,/d8 were obtained from differentia-
tion of the series (23) and evaluating it at x=1. The
terms of the differentiated series grow very large so
that only the first eight values of dR,/d8 could be ob-
tained. The remaining values were calculated from the

approximation [6]
m
62/3P <_E> Bnllii
3

<6R> = — (=1 29)
B/ s (

which is in good agreement with the values obtained by
machine calculation for larger values of #.

ArpeENDIX II

EsTIMATE OoF THE ERROR INTRODUCED
BY SETTING ds=dz

d*x d*x [1 n <dx>2:|"2
ds?  dg? dz

Itis

d*x da\*?"
z——[l —2(—) . (30)
dz? dz/ .
The slope of the ray #=dx/dz is given by
dx 1
=— (1 + )Y =~ (1 + —aé2>. (31)
ds 2
The derivative dx/ds is obtained from
dx f“ a*x J fL d*x (1 + i)
ds_ ods2s_ 0o ds? N ?
which, with the help of (30) becomes
dx L 3 d*x
~=f <1 ——~—x2>—dz. (32)
ds 0 2 dz?

Combining (31) and (32) and replacing # by its maxi-
mum value Z,.x, we see that the relative error is
A%

I < 2‘)Cmax
o

(33)

It follows from (13) that the relative error of the focal
length is

A
& < 2. (34)
Since the focal length is given by
2(0)
f=—=—= (35)
(L)
we have
x(0)\*
i = ( ) . (36)
J

The ray trajectory is a monotonic function so that
[ %(L)| = | fmax] -

A typical gas lens has a radius ¢ =0.3 cm and length
L =20 cm. Assuming f/L=2 and taking x(0)=a, we
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get %2, =35.6210"% or

A
lg 1121071,
I

To estimate the error introduced in the computation of
the principal surface we have to obtain the relative error
of the ray position x(L).

s d L
(L) = x(0) + f :gds = 2(0) + f #(2)ds

or using (31) and (32)

z dx
[f <1 ——x2>—~d§:]dz
0 2 dz?

< 2(0) + (1 + 2i500) f " f ’ —Z—f d
or ’ ’ '
Ale(L) — %(0)]

+(L) — 2(0)

From (14) we obtain

< 2%max. 37)
1
AL = p) < [;A[x(L) - x(O)]‘

x(L)y — x(0) Ad

X X

2
or with the help of (33), (37), and (14) and considering
that |sumex| = |%(L)],

AL =)

< Bimax.
L—yp

(38)
With the numbers of the example used in the foregoing,
we get

AL - p)

< 1.7 104

This shows that the error caused by replacing ds=dz
1s indeed negligible.
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